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with the experimental results on phase determination 
from high-order multiple diliraction (Chang, Hung, 
Luh, Pan, Tang & Sasaki, 1988). 

It should be noted that the derivation of Ih(N) is 
a kinematical treatment. However, the use of Green 
functions is a dynamical approach. For example, the 
pole of the Green function gives the dispersion 
equation (Ohtsuki & Yanagawa, 1966). The real part 
of the equation describes the relation between the 
wave vectors inside the crystal and the angular devi- 
ation of the incident beam from the Bragg angle. The 
imaginary part of the dispersion relation defines the 
absorption coefficient. By solving the dispersion 
equation and introducing appropriate boundary con- 
ditions, the diffraction intensity Ih(N) can be calcu- 
lated dynamically. 

The authors are indebted to the National Science 
Council for financial support through grant NSC77- 
0208-M007-71. One of us (SWL) is grateful to the 
same organization for a graduate fellowship. 
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Abstract 

We generalize the grid-projection method for the 
construction of quasiperiodic tilings. A rather general 
fundamental domain of the associated higher- 
dimensional lattice is used for the construction of the 
acceptance region. The arbitrariness of the funda- 
mental domain allows for a choice which obeys all 
the symmetries of the lattice, which is important for 
the construction of tilings with a given non-trivial 
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point-group symmetry in Fourier space. As an 
illustration, the construction of a two-dimensional 
quasiperiodic tiling with 12-fold orientational sym- 
metry is described. 

O. Introduction 

Interest in non-periodic tilings first arose from prob- 
lems in mathematical logic (Wang, 1965; Robinson, 
1971). However, since Penrose's invention of his well 
known non-periodic tilings (Penrose, 1974, 1979; 
Gardner, 1977), the motivation has changed to the 
study of geometrical questions related to such tilings. 
J. Conway (see Gardner, 1977) and N. G. de Bruijn 
(1981) have played a dominant role in this field. 
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668 QUASIPERIODIC TILINGS 

We define a tiling as a covering of the plane by 
translations of a finite number of polygons with no 
holes or overlaps. Note, however, that, depending on 
the context, other definitions may be more appropri- 
ate (e.g. Griinbaum & Shepard, 1987). Here we are 
interested in quasiperiodic tilings. By this we mean: 

(i) The tiling is not periodic. There exist no transla- 
tions (except the identity) which leave the tiling 
unchanged. 

(ii) If we put a 8 function to each vertex of the 
tiling, the Fourier transform of the resulting structure 
is a sum of ~ peaks, whose positions are integer linear 
combinations of a finite set of vectors { k l , . . . ,  k,}: 

F(k) = Y'.I~ Z" W, ...... , 6 ( k -  ,~/~k,).= (0.1) 

(iii) Any finite part of the tiling appears infinitely 
often in the tiling. 

Condition (iii) is often dropped, but the tilings we 
will consider have this property. 

Quasiperiodic tilings may have symmetries in Four- 
ier space which are incompatible with a periodic 
structure and therefore do not occur for crystals. A 
famous example is the Penrose tiling with fivefold 
symmetric Fourier transform. This has led to physi- 
cists' interest in quasiperiodic tilings, since icosahe- 
drally symmetric diffraction patterns of an AI-Mn 
alloy, observed by Schechtman, Blech, Gratias & 
Cahn (1984), could be explained in terms of a three- 
dimensional version of the Penrose tiling (Mackay, 
1981; Duneau & Katz, 1985; Elser, 1986; Kalugin, 
Kitaev & Levitov, 1986; Levine & Steinhardt, 1984). 
More information on the symmetry of quasiperiodic 
tilings and the connection with physics can be found 
in the Les Houches Proceedings (1986). 

The main concern of this paper will be a generaliz- 
ation of the grid-projection method used by various 
authors (Duneau & Katz, 1985; Elser, 1986; G5hler 
& Rhyner, 1986; Kalugin, Kitaev & Levitov, 1986; 
Korepin, 1986; Kramer & Neri, 1984; Socolar, Stein- 
hardt & Levine, 1985). Our algorithm projects part 
of an n-dimensional lattice F in E n onto an irra- 
tionally embedded d-dimensional subspace. It is 
based on a periodic tiling of E n by copies of a rather 
general fundamental domain of F, as opposed to 
G~ihler & Rhyner (1986), who considered only funda- 
mental parallelotopes. This extension allows for the 
choice of a fundamental domain whose closure obeys 
all the symmetries of the lattice, which is important 
for the construction of tilings with specified symmetry 
in Fourier space. The tilings so obtained are then no 
longer tilings by parallelotopes alone, but can contain 
any kind of convex polytopes. These tilings will not 
be the final step, however. We rather prefer to con- 
sider their Voronoi partitionings, since these seem to 
have more relevance to physics (Jaric, 1986; Henley, 
1986). 

The outline of this paper is as follows. After briefly 
reviewing the concepts of Voronoi partitioning and 
tilings by fundamental domains in §§ 1 and 2, we 
present our generalized algorithm in § 3. In § 4 we 
prove that the tilings constructed in § 3 are indeed 
quasiperiodic in the sense explained above. Finally, 
§ 5 is devoted to an example to illustrate these tech- 
niques. 

1. Tilings by parallelotopes and Voronoi domains 

The standard grid-projection method (G~ihler & Rhy- 
ner, 1986) yields tilings of the Euclidean space E d 

by a finite set of parallelotopes. Possible sets of para- 
lellotopes can be obtained as follows. Let {t,},_l ....... 
be a set of n vectors in E a (n > d). Any subset of d 
linearly independent vectors of this set spans a 
parallelotope (see next section). With the 
parallelotopes obtained in this way E d c a n  be tiled 
both periodically and quasiperiodically. 

It should be noted that the set of vertices of such 
a tiling is a special case of a Delauney (r, R) system 
(Delauney, 1937), which is a point set {vj} in E d with 
the following two properties: 

(i) The minimal distance between any two points 
of the system is r > 0. 

(ii) Inside or on the surface of any ball of radius 
R, no matter where we put its centre, there is at least 
one point of the system. 

With each (r, R) system we associate its Voronoi 
partitioning of E d, which divides E d into Voronoi 
domains, also called Dirichlet or Wigner-Seitz cells. 
The Voronoi domain associated with vj is a convex 
polytope and consists of all points of E d whose 
distance to vj is not larger than the distance to any 
other point v, ~ v~ in the system. Note that according 
to this definition a Voronoi domain is a closed set, 
which means that boundary points belong to two or 
more Voronoi domains. An (r, R) system has in gen- 
eral infinitely many different Voronoi domains, but 
a quasicrystal can have only finitely many (up to 
shifts) (see § 3). A (periodic) lattice has only one type 
of Voronoi domain. 

The Voronoi domain around a point vj of an (r, R) 
system in E d c a n  be constructed as follows. Consider 
the set of all vertices vi inside a closed ball of radius 
2R centred at vj. For each point v~ in this set, construct 
the ( d -  1)-dimensional hyperplane perpendicular to 
the segment v j -  v, and passing through its midpoint 
½v~ +½v s. Each of these hyperplanes cuts E d into two 
half spaces. The Voronoi domain v~ is the intersection 
of all those half spaces which contain vj. 

2. Fundamental domains of a lattice 

Consider a lattice F in E ~ generated by n linearly 
independent vectors e l , . . . , e ~ .  A fundamental 
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parallelotope Fp of F is the set 

Fp= ~ hiei, 0 < - h i < l .  (2.1) 
i = 1  

Since a lattice has infinitely many lattice bases, it has 
also infinitely many fundamental parallelotopes. A 
fundamental parallelotope is a special case of a funda- 
mental domain F of a lattice, which is a measurable 
set with the following two properties: 

(i) The translations of F by all lattice vectors of 
F cover E" with multiplicity one. 

(ii) F contains exactly one point of the lattice. 
It should be noted that a fundamental domain is 

neither closed nor open; only a part of the boundary 
belongs to F. In the following we will restrict ourselves 
to fundamental domains whose closure is a convex 
polytope. Particularly interesting is a fundamental 
domain whose closure is the Voronoi domain. From 
property (ii) it follows that with each fundamental 
domain F a unique lattice point y(F) is associated. 
This will become important later. 

3. The generalized grid-projection method 

Let us decompose the space E" containing, the .lattice 
F into two orthogonal subspaces, E = E n0) E . We 
will assume in the following that this decomposition 
is irrational, i.e. neither E II nor E J- contain any lattice 
vectors of F. Let Fo be a fundamental domain of F, 
and ~r(Fo) the partitioning of E" into all F transla- 
tions of F0. The closures of the F translations of F0 
will be called the cells of the partitioning. We assume 
that the cells are convex polytopes, and that the 
partitioning ~r(Fo) is face to face, i.e. if two cells 
have a non-zero intersection, then this intersection is 
a (common) face of these two cells. Note that the 
Voronoi partitioning is always face to face. If a cell 
is not equal to a Voronoi domain of the lattice, we 
moreover assume that the partitioning is generic in 
the sense that a face of dimension m is contained in 
exactly n - rn + 1 cells. The dual of such a partitioning 
is simplicial, i.e. all its cells (and their faces) are 
simplices. Next, consider a d-dimensional (affine) 
subspace E of E" which is parallel to Eli. We assume 
that E is located at a generic position, so that only 
faces of dimensions n -  d to n -  1 of the cells have 
non-zero intersection with E. 

The generalized projection method is now 
described as follows. The vertices of the tiling are 
obtained by projecting orthogonally onto E the set 
W of lattice points whose associated fundamental 
domain has a non-zero intersection with E: 

W = { v ( F ) [ F n E  ~ Q , F ~ r ( F o ) } .  (3.1) 

Next, we have to divide E into tiles by specifying all 
their faces of dimensions up to d - 1 .  The one- 
dimensional 'faces' are obtained by connecting all 

those vertices by a straight line whose associated cells 
share a common face of dimension n -  1 which cuts 
E. If d = 2, the tiling is then completely specified. For 
d > 2, however, the situation is somewhat more com- 
plicated. Those lattice points whose associated cells 
share a face of dimension k are the corners of a 
convex polytope of dimension n - k .  For a generic 
partitioning this is evident, for there are always 
exactly n - k +  1 such points. For the Voronoi par- 
titioning, we can argue differently. The points whose 
cells share the k face under consideration can all be 
connected by a chain or net of straight lines each of 
which is perpendicular to an ( n -  1) face containing 
the k face and thus perpendicular to the k face itself. 
Therefore, all these points are contained in a single 
plane of dimension n - k perpendicular to the k face. 
Hence, in both the Voronoi and the generic case we 
can build the ( n - k ) - d i m e n s i o n a l  polytope dual to 
a given k face. If now the k face cuts E, we project 
its dual polytope to E. In this way we obtain a 
prescription for the subdivision of E into tiles. Note 
that with each projected dual of a k face also all its 
boundaries are projected, since the k face is contained 
in the corresponding ( k + l )  faces which cut E too. 

The same tiling can also be obtained as the dual 
of a grid G. This grid is given by the intersection of 
the union of the boundaries of all cells of the par- 
titioning with the subspace E. The grid divides E into 
convex polyhedral cells, called meshes, the faces of 
which are the intersections of E with the ( n - 1 ) -  
dimensional faces of the cells of the partitioning. 
Each mesh of the grid corresponds to a cell which 
cuts E. Therefore, with each mesh we can associate 
the projection of the corresponding lattice point, and 
two lattice points belonging to meshes with a common 
( d -  1) face have to be connected by the projection 
of the corresponding lattice vector connecting the two 
lattice points. The vertices associated with the meshes 
sharing a common k face will become the comers of 
a ( d - k )  face of a tile [these vertices are indeed 
contained in a ( d - k )  plane as explained in the 
previous paragraph]. In this way we see that the tiling 
obtained previously by projection can be reconstruc- 
ted from the grid. According to this construction, it 
is the dual graph of the grid. 

What is not immediately clear is whether there will 
be overlapping tiles, i.e. whether the tiling is folded. 
Whether there are additional conditions required to 
avoid overlapping, and what these conditions would 
be, we leave as an open problem. For the Voronoi 
case, however, we have some (numerical) evidence 
that overlapping does not occur, and we conjecture 
that this is generally true for the Voronoi case. For 
the classical grid method, the necessary and sufficient 
non-overlapping conditions have been determined 
(G/ihler & Rhyner, 1986; de Bruijn, 1986). 

From the grid picture and from the periodicity of 
F it follows that the tiling consists only of a finite 
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number of different tiles (up to translation), for there 
are only finitely many inequivalent ( n -  d) faces of 
the cells of the partitioning which can cut E [note 
that the type of such an (n - d) face determines which 
vertices belong to the associated cell]. By a similar 
reasoning one finds that there are only finitely many 
arrangements of cells which share a common vertex, 
so that the Voronoi partitioning of the tiling, as con- 
structed in § 1, consists of a finite number of different 
cells too. Bounds on the number of different patches 
of radius R of such a quasiperiodic tiling have been 
obtained by G~ihler (1986). This number is finite and 
can grow only with a fixed power of R. 

Let us compare our construction briefly with the 
algorithm proposed by G~ihler & Rhyner (1986). They 
consider only special fundamental domains, namely 
parallelotopes. This has the disadvantage that for 
non-orthogonal lattices it is impossible to choose a 
parallelotope which is invariant under the whole 
point group of the lattice F. The choice of a symmetric 
fundamental domain is essential for the construction 
of quasiperiodic tilings which have the corresponding 
symmetry in Fourier space. By allowing a more gen- 
eral fundamental domain, e.g. the Voronoi domain, 
this deficiency is removed. This additional freedom 
is the main difference compared with G~ihler & Rhy- 
ner (1986). The use of different 'grid' and 'tiling 
spaces' or inclusion of a subsequent linear transfor- 
mation applied to the tiling could of course also be 
incorporated into the present algorithm. 

4. Proof of quasiperiodicity 

In this section we demonstrate that the tilings con- 
structed in the last section satisfy the three conditions 
for quasiperiodicity formulated in the Introduction. 
Since the proof of condition (ii) is a standard one 
(e.g. G~ihler & Rhyner, 1986; Zia & Dallas, 1985), we 
restrict ourselves to conditions (i) and (iii). 

First we prove non-periodicity. Let us define the 
projectors pII and P± projecting orthogonally onto 
E II and E ± respectively. Further, define the strip S as 

S =  {m+e l m ~  M, e~ Ell}, (4.1) 

where the acceptance region M is the projection P±F 
onto E ±, with F a translation of F0 centred at E. 
Then, we can write the set W defined in (3,1) as 
W =  F c~ S. Clearly, the projection of W onto EII, 

U II W = P W, is the set of vertices of the tiling. Owing 
II ± to the irrationality of the embedding of E and E , 

the sets pIIlr' and P±F are dense in E II and E ±, and 
there is a one-to-one correspondence between F, pill,, 
and P±F, as well as between W, W II, and W ± = P± W. 
Suppose that W II is periodic, i.e. W II is invariant under 
a translation gll. Then gll maps vertices to vertices and 
is therefore the projection of a lattice vector g. Hence, 
W II is also the projection of the set W + g. Since there 
is a one-to-one correspondence between W and W II 

this means that W =  W+g.  Let us project this 
equation onto E±: W ± = W ± + P±g. Since the closure 
of W ± is compact, this means that p i g  = 0 or g ~ E II, 
which contradicts our assumption of an irrational 
embedding of EII. Therefore the tiling is non-periodic. 

Now we show that every finite part W~c W Ih has 
infinitely many copies in W II. Denote by Wy the 
unique subset of W such that W~= pIbwy, and by 
W) its projection onto E ~. Since E is at a generic 
position, no lattice points are projected onto the 
boundary of M, and so W~ is in the interior of M. 
Let A be the distance of W) to the boundary of M, 

A = min ( Ix-  yl). (4.2) 
x e W ~  
yeaM 

For every lattice vector g whose projection onto E ± 
is inside an open ball of radius A, we have the result 
that the finite set i f ' I= W I + g c  F projects into M, 
P~- ff'I c M, and therefore belongs to the strip S. This 
means that a translation by pIIg maps W~ onto an 
equivalent set. Since P~-F is dense in E 1, there are 
infinitely many such lattice vectors, and so the proof 
is completed. 

5. Example: a dodecagonal tiling 

As an application, we discuss the construction of a 
class of two-dimensional tilings with 12-fold- 
symmetric Fourier spectrum. These tilings were first 
constructed by Stampfli (1986) by means of a grid. 
They may be relevant for the description of quasicrys- 
talline Ni-Cr  (lshimasa, Nissen & Fukano, 1985; 
G/ihler, 1988). More details about these and related 
tilings can be found in G/ihler (1988). 

The relevant lattice for our case is the 
diisohexagonal orthogonal primitive lattice (Brown, 
Billow, Neubi~ser, Wondratschek & Zassenhaus, 
1978) in four dimensions, denoted by F. This lattice 
has a point-symmetry group which contains the sub- 
group D24. The latter is the relevant symmetry group 
for our purposes. The lattice F is easily constructed 
as follows. Let us decompose E 4 into two orthogonal 
s u b s p a c e s ,  E 4 =  E I I ~ ) E  ±. E II is the space onto which 
we will project. Let { e l , . . . ,  e~2} be a star of 12 vectors 
in E 4 such that their projections on to  E II and E ± are 
given by 

ell = (cos [ zr( i - 1 ) /6 ] ,  sin [ Tr( i - 1 ) /6 ] )  
(5.1) 

e~- = (cos [ 5 r r ( i -  1)/6], sin [57r(i - 1)/6]) 

with respect to Euclidean coordinates in Eli and E ±. 
The vectors { e s , . . . ,  e12} can be expressed as integer 
linear combinations of the remaining four vectors, 
and since {e~ , . . . ,  e4} are rationally independent, the 
set {e~ , . . . ,  e12} generates a four-dimensional lattice 
which will be identified with F. 

In this example, we choose a fundamental domain 
whose closure is the Voronoi domain. Therefore we 
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have to construct the Voronoi partitioning of F. We 
note that the space spanned by el and e3, denoted by 
E a, is orthogonal to the space Eb spanned by e2 and 
e4. The vectors el and e3 generate a 2D regular 
hexagonal lattice F ~ in E a, and e2 and e4 generate a 
corresponding lattice F b in E b. Therefore, F is given 
as an orthogonal sum of two 2D regular hexagonal 
lattices, 

F = F a O F  b. (5.2) 

Next we recall the fact that in such a case the Voronoi 
domain of F is given by the topological product of 
the two Voronoi domains of F a and F b, 

V = v a x  V b, (5.3) 

which of course are regular hexagons. Let H a and 
H b be the hexagon nets given by the boundaries of 
all Voronoi domains of F a and F b respectively. Then 
the union of the boundaries of all Voronoi domains 
of F is given by 

N = ( H " x E b ) w ( E " x H b ) ,  (5.4) 

Fig. 1. Grid given by two hexagon nets. 

Fig. 2. Quasiperiodic tiling dual to grid of Fig. 1. 

i.e. N is the union of two orthogonal arrays of 
hexagonal 'tubes'. Let E be a generic plane parallel 
to Ell. The grid, i.e. the intersection of N with E, is 
then the union of the intersections of the two arrays 
of tubes, which are both regular hexagon nets, turned 
with respect to each other by 30 ° (see Fig. 1). The 
elementary hexagons of these nets are by a factor of 
two larger than the projections of the Voronoi 
domains of the hexagonal lattices. The relative posi- 
tions of the tyro nets are determined by the position 
of E. 

For the construction of Stampfli's tilings, the two 
algorithms discussed in § 3 now read as follows: 

A. Projection construction 

Project the centre of all those Voronoi domains of 
F onto E II which cut E. Connect all those points by 
a straight line whose Voronoi domains have a face 
in common which cuts E. 

B. Grid construction 

With each mesh of the grid N n E, associate a 
vertex of the tiling. If the meshes of two vertices have 
a common face, these vertices are connected by a line 
of unit length which is perpendicular to this face. 
This is Stampfli's prescription. 

A tiling constructed in this way is shown in Fig. 2. 
Let us finally note that this is a particularly simple 

example, owing to the fact that F is an orthogonal 
sum of two 2D lattices. From this it follows that the 
grid N n E is the union of two simple periodic grids. 
In the general case, N n E would be very compli- 
cated, but nevertheless all our constructions would 
go through as well. 

JR is deeply indebted to the L. D. Landau Institute 
in Moscow for the warm hospitality during the time 
when part of this work was done, and to the USSR 
Academy of Sciences for financial support. FG would 
like to thank Peter Stampfli for valuable discussions 
concerning the example in § 5. 
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Abstract 

It is shown that taking the appropriate terms from a 
series expansion of the Shannon-Jaynes entropy of 
a density map subject to intensity constraints gives 
the standard direct methods structure factor probabil- 
ity distribution functions. The use of two maps, one 
to represent a native structure, the other to represent 
either heavy atoms or the number density of 
anomalous scatterers, and the application of a similar 
expansion to the total entropy of both maps rapidly 
gives either the integrated direct methods-single 
isomorphous replacement or the integrated direct 
methods-anomalous scattering probability densities. 

I. Introduction 

The techniques of probabilistic direct methods have 
been applied to pairs of isomorphous structures 
(single isomorphous replacement, SIR) (Hauptman, 
1982a; Karle, 1983, 1984b; Giacovazzo, Cascarano 
& Zeng Chao-de, 1988), and to structures containing 
anomalous scatterers (single-wavelength anomalous 
scattering, SAS) (Hauptman, 1982b; Giacovazzo, 
1983; Karle, 1984a, b, c), and give rise to probability 
distribution functions (p.d.f.s) for combinations of 
the two sets of structure factors involved, i.e. those of 
the native and derivative, or of the Bijvoet pairs, 
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respectively. Such distributions have been obtained 
both for two structure factors, which are trivial in the 
native-only case, but now relate the native and deriva- 
tive structure factors with the same index, or the two 
members of a Bijvoet pair, and for the six structure 
factors dependent on a given triplet of reciprocal 
space indices, from which conditional distributions 
of eight kinds of three-phase invariants may be found 
as functions of the six amplitudes. The implications 
of these relations have been examined in several 
contexts, and Karle (1986) and Fortier, Moore & 
Fraser (1985) give further references to these develop- 
ments. 

These results were obtained from the standard 
direct methods hypothesis of atoms randomly 
independently and a priori uniformly distributed 
throughout the unit cell, and follow in a similar way 
to the calculation ofp.d.f.s ofinvariants for the native- 
only case. Extensive calculations were needed to com- 
bine the contributions of each atom towards the over- 
all p.d.f, of the structure factors. The p.d.f, of a 
particular phase invariant was found by fixing the 
amplitudes at the measured values, and possibly also 
integrating out phases not involved in the invariant 
of interest. 

Much discussion of the theory of applying 
maximum entropy to the phase problem has taken 
place in recent years (e.g. Collins, 1982; Wilkins, 
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